Math 54 Faculty: Professor Nadler/Paulin Study Group Leader: Trevor Wu (trevorhwu@berkeley.edu) Location: SLC

Math 54: Diagonalization

Review: Eigenswag and Bases

- 1. If a matrix **A**, a non-zero -vector **x**, and a constant λ , satisfy the equation $Ax = \lambda$, then λ is the _______.
- 2. Write the vector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in its B coordinates of basis B = $\{\begin{bmatrix} 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix}\}$:

Guided Introduction

$$A = \begin{bmatrix} 1 & 4 \\ 0 & 3 \end{bmatrix}$$

- 3. Consider this matrix A
 - a. Find its eigenvalues and corresponding eigenvectors
 - b. Create a matrix from the bases of the eigenspaces
 - c. Find the change of bases matrix from the standard basis to the eigenspace
 - d. If T(x) is a transformation = Ax for an x in R², then what would $[T]_B$ for the basis previously found?
 - i. What do you notice about $[T]_B$?

Definitions

Diagonalization is a way of factoring a matrix A from its eigenvalues and eigenvectors into the form $A = PDP^{-1}$. P is the matrix of the basis of all eigenvectors, while D is a diagonal matrix of the corresponding eigenvalues.

Two matrices A and B are similar if A can be written as PBP⁻¹.

An nxn matrix is only diagonalizable if it has n **distinct eigenvalues** (including multiplicities), in other words, if its eigenvectors span R^n .

Math 54 Faculty: Professor Nadler/Paulin Study Group Leader: Trevor Wu (trevorhwu@berkeley.edu) Location: SLC

Steps for Diagonalization

- 1. Find Eigenvalues and Eigenvectors of matrix, here, you should find out whether the matrix is diagonalizable.
- 2. Construct a matrix P from the eigenspaces for each eigenvector.
- 3. Find P⁻¹
- 4. Construct a diagonal matrix D from the eigenvalues, make sure each eigenvalue matches to its specific eigenvector in P.

Practice Diagonalization

- 1. Find the diagonalized representation of A = $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$
- 2. How would you find A¹⁰⁰ with diagonalization if $A = \begin{bmatrix} 1 & 4 \\ 0 & 3 \end{bmatrix}$.
- 3. Book Problem: Find the diagonalized representation of A = $\begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$

Foreshadowing

1. Spectral Theorem:

Find the eigenvectors of the symmetric matrix $A = \begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$. Then find the dot product of the eigenvectors.

- a. What do you notice about the eigenvectors?
- b. How can you write the matrix in the form $A = PDP^{T}$?

2. Singular Value Decomposition:

It turns out you can "diagonalize" matrices that are not square?

- a. How do you think this can be done?
- b. What would be the "eigenvalues"?